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Small black holes on cylinders

Troels Harmark*
The Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O” , Denmark

~Received 8 November 2003; published 17 May 2004!

We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in
d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders
proposed in J. High Energy Phys.05, 032 ~2002!. We use the new metric to compute corrections to the
thermodynamics which is seen to deviate from that of the (d11)-dimensional Schwarzschild black hole.
Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We
discuss the consequences of these results for the general understanding of black holes and we connect the
results to the phase structure of black holes and strings on cylinders.
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I. INTRODUCTION

Neutral and static black holes on cylinders1 Rd213S1

have a more interesting dynamics and richer phase struc
than black holes on flat spaceRd. Neutral and static black
holes in flat space are for a given massM uniquely described
by the Schwarzschild solution with massM. With black
holes on cylinders we can form a dimensionless quan
since the radius of the cylinder gives us an extra macrosc
scale in the system. This means that the behavior of the b
holes can depend highly on the value of such a dimens
less quantity. This ties together with the fact that the cylin
Rd213S1 has a non-trivial topology since it has a no
contractible cycle. This makes it possible for the black h
to grow so big that its event horizon can ‘‘meet itself’’ acro
the cylinder. It, moreover, makes it possible to have ot
types of black objects, such as, for example, black stri
which have an event horizon that wraps across the cylin

The fact that the phase structure of black holes on cy
ders is richer than, for example, the Schwarzschild bl
holes, can also be attributed to the fact that the cylin
space-timeM d3S1 is not maximally symmetric unlike the
Minkowski, de Sitter and anti–de Sitter space-times. U
now, black hole solutions have only been found for ma
mally symmetric space-times or for other highly symmet
space-times. In particular, solutions describing black ho
on R23S1 have been found@1–4# using the Israel-Khan so
lution @5#. However, theR23S1 cylinder is very different
from the Rd213S1 cylinders for d>4 since for theM 3

3S1 space-time there are enough killing vectors to find
solution using the construction of Weyl@6#. For M d3S1

with d>4 there are instead too few killing vectors to find
Weyl solution@7# which also is reflected in the fact that th
metric for black holes on such cylinders does not belong
an algebraically special class@8#.

The rich phase structure for black objects on cylinders

*Electronic address: harmark@nbi.dk
1With a black hole on a cylinderRd213S1 we mean a black hole

in a (d11)-dimensional space-time that asymptotes toM d3S1 far
away from the black hole, whereM d is the d-dimensional
Minkowski space-time.
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been explored from many points of view. Gregory a
Laflamme @9,10# discovered that uniform black strings o
cylinders, i.e. strings that are wrapped symmetrically arou
the cylinder, are unstable to linear perturbations when
mass of the string is below a certain critical mass. This w
interpreted to mean that a light uniform black string deca
to a black hole on a cylinder since that has higher entro
However, Horowitz and Maeda@11# argued that this transi
tion should have an intermediate step in the form of a lig
non-uniform black string. Such a non-uniform string bran
has not been found, but a new branch of non-uniform stri
has been found by@12–14#. This new branch of non-uniform
strings seemingly does not exists for the mass range w
the uniform string is classically unstable.

Several proposals for the phase structure of black obj
on cylinders have been put forward@11,13,15–25#.2 In
@21,22# a new phase diagram, the (M ,n) phase diagram, was
proposed as a tool to understand the phase structure of b
objects on cylinders. HereM is the mass andn is the relative
binding energy. A similar proposal for a phase diagram w
made in@23#. One can thus formulate the main goal of th
field of research as follows: to draw the complete (M ,n)
phase diagram depicting all the possible phases of black
jects on cylinders.

Finding the solution for black holes on cylinders is ther
fore part of the larger question of understanding the ph
structure of black objects on cylinders. Numerical studies
black holes on the cylinderR43S1 was recently done in
@24,25#, but it is nevertheless still desirable to get a bet
analytic understanding of black holes on cylinders in orde
provide definite answers to the questions regarding the ph
structure of black holes on cylinders.

Progress towards finding a solution for black holes
cylinders was made in@15# where an ansatz was proposed f
metrics describing black holes on cylindersRd213S1 with
d>4. In @22# it was proven that any neutral and static bla
hole on a cylinder can be put in this ansatz. The proof wa
generalizing of a proof of Wiseman@18#. However, even
though the ansatz of@15# is highly constrained the equation
of motion are still very hard to solve.

In this paper we consider therefore the more tracta

2Other recent and related work includes Refs.@26–32#.
©2004 The American Physical Society15-1
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problem of finding a metric describingsmall black holes on
cylinders, i.e. black holes on cylinders with a small mass.
use the ansatz of@15# and find a metric describing the com
plete small black hole space-time, from the horizon to
asymptotic region far away from the black hole.

We use our new solution for small black holes on cyl
ders to find the corrected thermodynamics. The thermo
namics becomes that of a Schwarzschild black hole ind
11 dimensions when the mass goes to zero. But it devi
from the Schwarzschild black hole thermodynamics once
mass is non-zero. We find, furthermore, the relative bind
energy and draw the (M ,n) phase diagram with the blac
hole branch in the cased55.

The structure of the paper is as follows: In Sec. II w
introduce the basic tools necessary for constructing the s
black hole solution. In Sec. II A we first review the measu
ments of asymptotic quantities of@21#. We then review in
Sec. II B the ansatz of@15# for black holes on cylinders. In
Sec. II C the Fourier modes of the black hole branch
found. Using this, we obtain the flat-space limit of the bla
holes on cylinders in the specific ansatz.

In Sec. III we modify the ansatz by changing the coor
nates. This proves useful for constructing the small bla
hole solution. After defining the new coordinates we sub
quently consider the flat space limit of the ansatz with
new coordinates. In Appendix A the thermodynamics of b
coordinate systems is considered.

In Sec. IV we take the first step towards constructing
small black hole solution by finding the first correction to fl
space far away from the black hole. In Sec. IV A we find t
correction by first considering an arbitrary Newtonian gra
ity potential and then using the result for the specific bla
hole case. In Sec. IV B we then transform the result to
ansatz in the new coordinate system.

In Sec. V we use the results of Sec. IV to find the co
plete metric for small black holes on cylinders. We also u
the results of Appendix B where general spherical met
are considered.

In Sec. VI we use the metric of Sec. V to find the co
rected thermodynamics of black holes on cylinders. This
used in Sec. VII to draw the (M ,n) phase diagram for black
holes and strings on cylinders in thed55 case.

Finally, we conclude the paper in Sec. VIII.

II. PRELIMINARIES

In this section we lay the groundwork necessary to c
struct the corrected black hole on cylinder solution. In S
II A we review how the asymptotically measurable quantit
are defined. In Sec. II B we present the general ansatz fo
metric of black holes on cylinders. In Sec. II C we give wh
the Fourier modes of black holes on cylinders should be
use this to describe the flat-space limit of the ansatz for
metric in detail.

A. Asymptotically measurable quantities

In @21,22# a program was set forth to categorize all sta
vacuum solutions of higher-dimensional general relativ
10401
e

e

y-

es
e
g

all
-

e

-
k
-

e
h

e

-
k
e

-
e
s

is

-
.

s
he
t
d
e

~i.e. pure gravity solutions! that asymptotes toM d3S1, i.e.
all black objects on the cylinderRd213S1, according to
their asymptotic behavior. In this section we review the ide
and results of@21,22# that are relevant to this paper.

In the following we define the physical parameters th
one can measure for any solution asymptoting toM d3S1.
We parametrize here the metric for the flat space-timeM d

3S1 as

ds252dt21dr21r 2dVd22
2 1dz2, ~2.1!

with t being the time,r the radial coordinate in theRd21 part
andz the coordinate forS1 with periodL52pRT .

In the rest of the paper we setRT51 ~so thatL52p) to
simplify our expressions. Thus,r andz are dimensionless in
the following: i.e. r new5r old /RT and znew5zold /RT . More-
over,z has period 2p below.

To define our asymptotically measurable parameters
consider Newtonian matter with an energy momentum ten

T005r, Tzz52b. ~2.2!

We define the massM and the relative binding energyn by

M5E ddx%~x!, n5
1

ME ddxb~x!. ~2.3!

Note that we can usen to define the tensionT5nM/L,
which is the tension a string would have if one had a str
with the sameM andn as the black hole. This is used as a
alternative parameter ton in @23#. See also@33,34# for mea-
surements of the tensionT.

We define, furthermore, the two gravitational potential

¹2F58pGN

d22

d21
%, ¹2B52

8pGN

d21
b, ~2.4!

whereGN is the (d11)-dimensional Newtons constant. Du
to the conservation of the energy-momentum tensor we
quire that]zb50. This means thatb5b(r ), i.e. b only de-
pends onr. Away from the mass distribution we have then3

F~r ,z!52
d22

~d21!~d23!
4GN(

k50

`
h~kr !

r d23
cos~kz!%k ,

~2.5!

B~r ,z!5
1

~d21!~d23!

4GN

Vd22

nM

r d23
, ~2.6!

with

h~x!522(d25)/2
1

GS d23

2 D x(d23)/2K (d23)/2~x!, ~2.7!

3Here Vk52p (k11)/2/G@(k11)/2# is the volume of a unitk
sphere.
5-2
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SMALL BLACK HOLES ON CYLINDERS PHYSICAL REVIEW D69, 104015 ~2004!
whereKs(x) is one of the modified Bessel functions of th
second kind~in standard notation!. The coefficients%k , k
>0, are the Fourier modes of the mass distribution. Clea
%05M /Vd22.

From the above we see that for an arbitrary static m
distribution of Newtonian matter onM d3S1 which is
spherically symmetric onRd21 the measurable paramete
are the massM, the relative binding energyn, and the Fou-
rier modes%k , k>1. We now turn to how to measure the
parameters.

Independently of the gauge, we have that thegtt compo-
nent of the metric to first order inGN is @21#

gtt52~112F12B!. ~2.8!

If we work in a coordinate system where the leading corr
tion to gzz for r→` is independent ofz we, moreover, have
that @21#

gzz511
1

~d21!~d23!

4GN

Vd22

@12~d22!n#M

r d23

1O~r 22(d23)!, ~2.9!

is the leading correction togzz for r→`. Therefore, using
Eqs.~2.8! and~2.9! we see that for any given static metricM,
n and%k , k>1, can be measured.

In particular, we define the massM, the relative binding
energyn and the Fourier modes%k , k>1, for any static pure
gravity solution asymptoting toM d3S1 as what we mea-
sure by applying Eqs.~2.8! and~2.9! with Eqs.~2.5!–~2.7!.4

We apply these results on the black hole on cylinder so
tions below.

B. Ansatz for black hole solution

In order to find a metric for black holes on cylinde
Rd213S1 it is important first to find an ansatz for the metr
that only has a limited number of free functions. Progress
this direction was made in@22# where it was shown that th
metric for any neutral and static black hole on a cylind
Rd213S1 which is spherically symmetric onRd21 can be
written in the form

ds252 f dt21
A

f
dR21

A

Kd22
dv21KR2dVd22

2 ,

f 512
R0

d23

Rd23
, ~2.10!

4Notice that the measurements of the physical quantities ass
ated with the sources of the gravitational field for solutions w
event horizons are defined in analogy with the results for n
gravitational Newtonian matter. The reason behind this is the p
ciple that any source of gravitation affecting the asymptotic reg
the same way should also have the same values for the phy
parameters associated with the sources of the gravitational fiel
10401
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whereA(R,v) andK(R,v) are two functions specifying the
solution. The ansatz~2.10! was proposed in@15# for black
holes on cylinders and was proven to be correct in@22# gen-
eralizing a proof of Wiseman in@18#.

The properties of the ansatz~2.10! were extensively con-
sidered in@15#. It was found thatA(R,v) can be written
explicitly in terms ofK(R,v) thus reducing the number o
unknown functions to one. The functionsA(R,v) and
K(R,v) are periodic inv with period 2p. Note thatR5R0
defines the location of the event horizon for the black ho

The asymptotic region, i.e. the region far away from t
black hole, is located atR→`. We impose the conditions
that r /R→1 and z/v→1 for R→`. This also means tha
A,K→1 for R→`.

We review the thermodynamics of the ansatz~2.10! in
Appendix A.

As explained in@15# and in the Introduction, finding a
solution to the equations forA(R,v) and K(R,v) is very
hard. The equations seem highly non-linear and so far
simplifications have been found. However, if we consid
small black holes on cylinders, i.e. small massesM, the
equations simplify, as we shall see in the following. W
therefore focus in the following on solving the equations
A(R,v) andK(R,v) to leading order inR0 ~theR0→0 limit
is equivalent to theM→0 limit since M is proportional to
R0

d23).

C. Finding the Fourier modes and the flat-space limit

We now consider the limitM→0 for a black hole on a
cylinder. Physically, it is clear that for very small masses
black hole should behave as a point particle as seen from
observer standing away from the black hole in the wea
curved region of space-time. Thus, asM→0 the Newtonian
potentialF(r ,z) should become that of point masses on
cylinder. By the same token the relative binding energyn
should go to zero, since the interaction of the black hole w
itself across the cylinder becomes smaller and smaller as
black hole becomes smaller~see also@15# for a quantitative
discussion of this!. We thus get that forM→0 the Newtonian
potential is

F~r ,z!52
8pGNM

~d21!Vd21
F~r ,z!, ~2.11!

with F(r ,z) given as

F~r ,z!5 (
k52`

`
1

@r 21~z22pk!2# (d22)/2
. ~2.12!

Moreover,B(r ,z)/(GNM )→0 for M→0 sincen should go
to zero. Note that we assume the black hole singularity to
located at (r ,z)5(0,0).

The potential~2.11! is easily found using Newtons law o
gravity for points particles@use, for example, Eq.~2.4!#.
Thus, the only thing we have used here is that forM→0
Newtons law of gravity governs almost all of the space-tim
except the vanishingly small part close to the black hole,
around (r ,z)5(0,0).
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TROELS HARMARK PHYSICAL REVIEW D69, 104015 ~2004!
We can expandF(r ,z) in Fourier modes as

F~r ,z!5
kd

r d23 S 112(
k51

`

h~kr !cos~kz!D , ~2.13!

whereh(x) is given by Eq.~2.7! and where we defined

kd5
1

2p

d22

d23

Vd21

Vd22
. ~2.14!

Using then Eq.~2.13! we see that we can find the Fouri
modes%k of F(r ,z) in the M→0 limit.

We now consider the consequence of this observation
black hole solutions in the ansatz~2.10!. Taking theM→0
limit is clearly the same as taking theR0→0 limit. Define

A0~R,v !5 lim
R0→0

A~R,v !, K0~R,v !5 lim
R0→0

K~R,v !.

~2.15!

We then see from the ansatz~2.10! and from~2.8! that as
consequence of~2.11! we get

lim
R0→0

R0
d23

r d23
K0~r ,z!(d23)/25 lim

R0→0

16pGNM

~d21!Vd21
F~r ,z!.

~2.16!

Since from Eq.~A3! we have

M5
Vd22

8GN

~d21!~d23!

d22
R0

d23

in the R0→0 limit, we get that

K0~r ,z!5r 2kd
22/(d23)F~r ,z!2/(d23). ~2.17!

This result will be important below, since the solution to t
equations forK(R,v) can be thought of as a correction
K0(r ,z) in Eq. ~2.17!. Thus, Eq.~2.17! is the zeroth order
part of K(r ,z) and below we find the leading correction
K(r ,z).

Notice that by using Eq.~2.17! we can find the flat spac
limit R0→0 of the black hole on cylinder solutions. Usin
the definition~2.15! we see thatM d3S1 has the flat space
metric

ds252dt21A0dR21
A0

K0
d22

dv21K0R2dVd22
2 .

~2.18!

Comparing this with Eq.~2.1! we see that

Rd235
kd

F~r ,z!
. ~2.19!

From requiring a diagonal metric in the (R,v) coordinates it
is not hard to show that the resulting integrability conditi
on v is solved by@15#
10401
or

] rv5
r d22

~d23!kd
]zF, ]zv52

r d22

~d23!kd
] rF.

~2.20!

This in turn gives

A0~r ,z!5~d23!2kd
22/(d23) F~r ,z!2(d22)/(d23)

~] rF !21~]zF !2
.

~2.21!

Note that bothA0(R,v) andK0(R,v) are periodic inv with
period 2p. We note that the above flat-space coordinate s
tem is precisely that proposed in@15# for the flat-space limit
of black holes on cylinders.

Finally, we note that using Eqs.~2.17!, ~2.10!, ~2.8! and
~A3! we see that Eq.~2.17! in fact has the consequence th

F~r ,z!1B~r ,z!52S 12
n

d22D 8pGNM

~d21!Vd21
F~r ,z!,

~2.22!

also for finite masses, which means that given a black h
solution with a massM and binding energyn we can use Eq.
~2.22! to find the Fourier modes%k . This ensures the
uniqueness of the black hole branch.5

III. ANSATZ IN NEW COORDINATE SYSTEM

In this section we define a new set of coordinates ba
on the (R,v) coordinates defined by the ansatz~2.10!. As we
explain in the following, these new coordinates are very u
ful to describe the metric near the horizon of a black hole
a cylinder.

Consider a small black hole on a cylinderRd213S1. We
can think of this black hole as a one-dimensional array
black holes inRd, the covering space forRd213S1. If we
make the size of the black holes very small the metric ne
particular black hole in the array should be like
(d11)-dimensional Schwarzschild black hole. The met
for a (d11)-dimensional Schwarzschild black hole can
written

ds252S 12
rs

d22

rd22D dt21S 12
rs

d22

rd22D 21

dr2

1r2~du21sin2udVd22
2 !. ~3.1!

We have written out theSd21 part in an angle and anSd22

part since we have a generalSO(d21) symmetry of our
small black hole solutions. We now want to construct a n
ansatz for small black holes that asymptotes to the me
~3.1! near the horizon asM→0.

To do this, we first notice that the flat-space limit of th
(d11)-dimensional Schwarzschild black hole metric~3.1! is
the spherical coordinate system onM d11 with metric

5This observation is considered from another point of view
@35#.
5-4
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SMALL BLACK HOLES ON CYLINDERS PHYSICAL REVIEW D69, 104015 ~2004!
ds252dt21dr21r2du21r2sin2udVd22
2 . ~3.2!

We can also use this coordinate system forM d3S1 if only
we remember thatM d11 is the covering space. We ca
therefore relate the spherical coordinates (r,u) to the cylin-
drical coordinates (r ,z) defined via the metric~2.1! by the
relations

r 5r sinu, z5r cosu. ~3.3!

Note here that the (r ,z)5(0,0) point, where the small blac
hole singularity is located, corresponds tor50 in the spheri-
cal coordinates.

We now want to define the new coordinatesr̃ and ũ in
terms of the (R,v) coordinates so thatr̃5 r̃(R) and ũ

5 ũ(v) along with the condition thatr̃/r→1 and ũ/u→1
for R→0 with R050. It is not hard to see that all thes
requirements are met by defining (r̃,ũ) from (R,v) accord-
ing to the relations

Rd235kdr̃d22, v5p2
d22

d23
kd

21E
x50

ũ
dx~sinx!d22.

~3.4!

Note here thatũ50 corresponds tov5p and ũ5p to v
52p.

If we in addition define the two functionsÃ( r̃,ũ) and
K̃( r̃,ũ) by

A5
~d23!2

~d22!2
~kdr̃ !22/(d23)Ã, K5sin2ũ~kdr̃ !22/(d23)K̃,

~3.5!

one can check that the ansatz~2.10! now can be written in
the (r̃,ũ) coordinates as

ds252 f dt21
Ã

f
dr̃21

Ã

K̃d22
r̃2dũ21K̃ r̃2sin2ũdVd22

2 ,

f 512
r0

d22

r̃d22
, ~3.6!

wherer0
d225kd

21R0
d23 . We review the thermodynamics o

the ansatz~3.6! in Appendix A.

A. Flat space limit of „r̃,ũ… coordinates

Take now the flat space limitr0→0 limit of the metric
~3.6!. This gives the metric

ds252dt21Ã0dr̃21
Ã0

K̃0
d22

r̃2dũ21K̃0r̃2sin2ũdVd22
2 ,

~3.7!

with
10401
Ã0~ r̃,ũ !5 lim
R0→0

Ã~ r̃,ũ !, K̃0~ r̃,ũ !5 lim
R0→0

K̃~ r̃,ũ !.

~3.8!

Using Eqs.~2.19! and ~2.20! together with Eq.~3.4! we see
that the flat space coordinates (r̃,ũ) in terms of the (r,u)
coordinates are given by

r̃d225
1

F~r,u!
, ~3.9!

~sinũ !d22]rũ5
rd23

d22
~sinu!d22]uF,

~sinũ !d22]uũ52
rd21

d22
~sinu!d22]rF.

~3.10!

HereF(r,u) is the functionF(r ,z) defined in~2.12! written
in (r,u) coordinates@defined in~3.3!#.

We now want to study the flat space metric~3.7! near the
point r̃50, i.e. for r̃!1, since that is where the black ho
is located. Clearly, from Eq.~3.9!, r̃!1 is equivalent tor
!1. Thus, as a first step, we need to understandF(r,u) for
r!1. ExpandingF(r,u) for r!1 we get6

F~r,u!5
1

rd22
1

2z~d22!

~2p!d22
1

z~d!

~2p!d
~d22!@d cos2u21#r2

1O~r4!. ~3.11!

One can now use the expansion~3.11! of F(r,u) for r!1 to
find the relation between (r,u) and (r̃,ũ) for r̃!1. We get7

r5 r̃S 11
2z~d22!

~d22!~2p!d22
r̃d221O~ r̃d!D , ~3.12!

sin2u5sin2ũS 11
4z~d!

~2p!d
cos2ũ r̃d1O~ r̃d12!D .

~3.13!

One can easily obtain the higher order corrections as w
However, those will not be of importance in this paper.

Finally, we are ready to find the expansions ofÃ0( r̃,ũ)
and K̃0( r̃,ũ) for r̃!1. From Eqs.~2.17! and ~2.21! along
with Eq. ~3.4! we get

6Here z(s) is the Riemann zeta function defined asz(s)
5(m51

` m2s.
7Note that Eqs.~3.10! and ~3.13! explicitly show thatu50 is

equivalent toũ50. In terms of the (R,v) coordinates this shows
that A0(R,v) andK0(R,v) are periodic inv with period 2p, also
near the location of the black hole.
5-5



a
i
in
ac
tr

ric
tz
o

ia

t

d
n
n
ec

-
gy

tz

ly,

o-

TROELS HARMARK PHYSICAL REVIEW D69, 104015 ~2004!
K̃05
r2sin2u

r̃2sin2ũ
, Ã05@~]rr̃ !21 r̃2K̃0

2(d22)~]rũ !2#21.

~3.14!

Using this with the expansions~3.13! we get

Ã0~ r̃,ũ !511
4~d21!z~d22!

~d22!~2p!d22
r̃d221O~ r̃d!, ~3.15!

K̃0~ r̃,ũ !511
4z~d22!

~d22!~2p!d22
r̃d221O~ r̃d!, ~3.16!

for r̃!1. We included here the corrections to orderr̃d22.
The following corrections at orderr̃d depends onũ.

IV. CORRECTED METRIC AWAY FROM BLACK HOLE

In this section we present the corrected metric for sm
black holes for the region away from the black hole. This
the region governed by the Newtonian limit of the Einste
equations. This gives a first-order correction to the flat-sp
metric that we use in Sec. V to construct the complete me
for small black holes.

In Sec. IV A we find the general correction to the met
for an arbitrary Newtonian gravity potential in the ansa
~2.10!. In Sec. IV B we transform the result of Sec. IV A t
the (r̃,ũ) coordinates.

A. Solving for general Newtonian gravity potential

Consider the Einstein equations for a general Newton
gravity potentialF and a general binding energy potentialB

R t
t 52¹2F2¹2B, R z

z 5
1

d22
¹2F1~d22!¹2B,

R r
r 5R f1

f1 5
1

d22
¹2F2¹2B, ~4.1!

wheref1 is one of the angles on theSd22 sphere. The aim in
the following is to find a solution of Eq.~4.1! for small
masses, i.e. forM→0. This can then subsequently be used
get the leading correction inR0

d23 to the metric for small
black holes.

In Sec. II C it is explained thatn→0 for M→0. This has
the consequence that whileF/(GNM ) is finite for M→0
then B/(GNM )→0 for M→0. We see then from Eq.~4.1!
that we can neglect theB potential since it is small compare
to theF potential forM→0. In other words, any correctio
to n only appears as a second-order effect in the correctio
the metric. With respect to computing the first order corr
tion to the metric we can therefore effectively setn50.

Setting nown50 we only have a Newtonian gravity po
tential F and there are no potentials for the binding ener
In the (R,v) coordinates this gives the Einstein equations
10401
ll
s

e
ic

n

o
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-

.

R t
t 52¹2F, R v

v 5R R
R 5R f1

f1 5
1

d22
¹2F, RRv50.

~4.2!

We can, moreover, restrict ourselves to potentialsF
5F(R) which does not depend onv, since in the end we
will set F52 1

2 (R0
d23/Rd23). Note that then

¹2F5
1

A0
S F91

d22

R
F8D , ~4.3!

where the prime refers to the derivative with respect toR. We
now want to solve the Einstein equations~4.2! to first order
in GN .

The ansatz for the metric is

ds252~112F!dt21~122u12g!A0dR2

1@112g2~d22!2h#
A0

K0
d22

dv2

1~112h!K0R2dVd22
2 , ~4.4!

where u, g and h are undetermined functions. The ansa
~4.4! is chosen so that forF5u52 1

2 (R0
d23/Rd23) it re-

duces to a form consistent with the general ansatz~2.10!. The
idea is now to findu, g andh as functions ofF andF8 so
that the Einstein equations~4.2! are satisfied to first order.

Since]R
2g is present inR R

R but ]R
2u and]R

2h are not we
see thatg5g1F since otherwise we will have aF- term in
R R

R which cannot be canceled by other terms. Similar
sinceR v

v have]R
2g and ]R

2h terms but not a]R
2u term we

need thath5h1F. Thus, our ansatz foru, g andh is

u5u1F2~12u1!
R

d23
F8, g5g1F, h5h1F.

~4.5!

Note that we use the above ansatz foru to ensure thatu
5F wheneverF52 1

2 (R0
d23/Rd23).

After various algebraic manipulations we find that the s
lution to the Einstein equations~4.2! to first order is

u52
R

d23
F8, g5

1

d23 S 1

d22
1

R

2

]RA0

A0
DF,

h5
1

d23 S 1

d22
1

R

2

]RK0

K0
DF. ~4.6!

Note that theR→0 andR→` limits reproduce the results
found previously in@15#.

Setting thenF52 1
2 (R0

d23/Rd23) we find that the lead-
ing correction inR0

d23 to the small black hole metric in the
ansatz~2.10! is given by

A5S 12
1

~d22!~d23!

R0
d23

Rd23D A02
R

2~d23!

R0
d23

Rd23
]RA0 ,

~4.7!
5-6
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K5S 12
1

~d22!~d23!

R0
d23

Rd23D K02
R

2~d23!

R0
d23

Rd23
]RK0 .

~4.8!

In conclusion, Eqs.~4.7! and~4.8! describe the black hole
metric in the ansatz~2.10! for R@R0 whenR0!1.

B. Corrected metric in „r̃,ũ… coordinates

The leading correction~4.7! and ~4.8! is easily trans-
formed to the (r̃,ũ) coordinates. This gives

Ã5Ã02
r̃

2~d22!

r0
d22

r̃d22
]r̃Ã0 ,

K̃5K̃02
r̃

2~d22!

r0
d22

r̃d22
]r̃K̃0 . ~4.9!

Therefore, Eq.~4.9! describes the metric@in the ansatz~3.6!#
for small black holes on cylinders forr̃@r0 to first order in
r0

d22 whenr0!1.

Using now ther̃!1 expansion ofÃ0 and K̃0 found in
Eqs.~3.15! and ~3.16! we get

Ã511
2~d21!z~d22!

~d22!~2p!d22
@2r̃d222r0

d22#1O~ r̃d!,

~4.10!

K̃511
2z~d22!

~d22!~2p!d22
@2r̃d222r0

d22#1O~ r̃d!.

~4.11!

Thus, the functions~4.10! and ~4.11! describe the metric in
the ansatz~3.6! for r0! r̃!1. This result is used below to
find the metric of small black holes forr0<r̃!1.

V. METRIC FOR SMALL BLACK HOLES ON CYLINDERS

In this section we find the metric for small black holes
cylinders.

In Sec. IV we found that forr0! r̃!1 the small black
hole is described by Eqs.~4.10! and ~4.11! in the ansatz
~3.6!.

We now want to solve the vacuum Einstein equations
r0<r!1. We first notice that the functionsÃ and K̃ given
by Eqs.~4.10! and ~4.11! are independent ofũ. This means
that we can takeÃ and K̃ to be independent ofũ for r0<r̃
!1. This can easily be argued using a systematic expan
in terms ofr0

d22/ r̃d22.
Using now the result of Appendix B that the metric~B.1!

has the vacuum solutions given by the metric~B.2! with the
function u given by ~B.9!, we get that forr0<r̃!1 the
functionsÃ and K̃ in the ansatz~3.6! are given by
10401
r

on

Ã2[d22/2(d21)]5K̃2(d22)/25
12w2

w

r̃d22

r0
d22

1w, ~5.1!

with w being a constant. Comparing Eq.~5.1! with Eqs.
~4.10! and ~4.11! we see then that

w511
z~d22!

~2p!d22
r0

d221O~r0
2(d22)!. ~5.2!

In conclusion, the metric of a small black hole on a cylind
for r0<r̃!1 is given by the ansatz~3.6! with the functions
Ã and K̃ given as in Eqs.~5.1! and ~5.2!.

We remind the reader that the metric for largerr̃ is given
by ~4.9! in the ansatz~3.6! Thus, we have found the complet
metric, i.e. for allr̃>r0, for black holes on cylinders with
r0!1 to orderr0

d22. Since M}r0
d22 this means that we

have found the complete metric for small black holes
cylinders to first order in the mass.

We summarize the main result: forr0<r̃!1 the metric
of a small black hole on a cylinderRd213S1 is given by

ds252 f dt21 f 21G22(d21)/(d22)dr̃2

1G22/(d22)r̃2~dũ21sin2ũdVd22
2 !, ~5.3!

f 512
r0

d22

r̃d22
, G~ r̃ !5

12w2

w

r̃d22

r0
d22

1w,

w511
z~d22!

~2p!d22
r0

d221O~r0
2(d22)!, ~5.4!

to first order inr0
d22.

We notice thatw51 in the metric~5.3! and ~5.4! corre-
sponds to the (d11)-dimensional Schwarzschild black ho
metric ~3.1!, thus we indeed get that forr0→0 the small
black hole asymptotes to the (d11)-dimensional Schwarzs
child black hole. Moreover, the (r̃,ũ) coordinates asymp
totes to the (r,u) coordinates in this limit as expected. In th
rest of the paper we consider the consequences of the s
black hole on the cylinder metric~5.3! and~5.4! that we have
obtained.

VI. CORRECTED THERMODYNAMICS

In this section we find the corrected thermodynamics t
results from the metric for small black holes on cylind
~5.3!, ~5.4! Note that the general thermodynamics for t
ansatz~3.6! in ( r̃,ũ) coordinates is listed in Appendix A.

It is easily seen from Eqs.~5.1! and~5.2! that Ã( r̃,ũ) on
the horizon, as defined in Eq.~A7!, is

Ãh511
2~d21!z~d22!

~d22!~2p!d22
r0

d221O~r0
2(d22)!. ~6.1!

From this we can find the leading correction to the relat
binding energy. This is done using Eq.~A9!. We get
5-7
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n5
~d22!z~d22!

2~2p!d22
r0

d221O~r0
2(d22)!. ~6.2!

We thus see that the relative binding energyn is non-zero.
That n becomes positive and not negative is expected s
one cannot have negativen @36,37#. As we shall see below
the fact thatn is non-zero signals that the physics of bla
holes on cylinders is different from that of black holes in fl
space.

Using ~6.1! and ~6.2! in ~A.8! we now get the corrected
thermodynamics

M5
~d21!Vd21

16pGN
r0

d22S 11
z~d22!

2~2p!d22
r0

d221O~r0
2(d22)!D ,

~6.3!

T5
d22

4pr0
S 12

~d21!z~d22!

~d22!~2p!d22
r0

d221O~r0
2(d22)!D ,

~6.4!

S5
Vd21

4GN
r0

d21S 11
~d21!z~d22!

~d22!~2p!d22
r0

d221O~r0
2(d22)!D .

~6.5!

One can easily check that both the Smarr formula@21,23#
(d21)TS5(d222n)M and the first law of thermodynam
ics dM5TdS holds.

We see that the corrected thermodynamics~6.3!–~6.5! be-
comes increasingly like that of a Schwarzchild black hole
a d11 space-time asM→0, exactly as one would expec
The corrections~6.3!–~6.5! thus encapture the departure
the thermodynamics of black holes on cylinders from that
the Schwarzchild black hole.

To see more clearly what this means for the thermo
namics, we can compute

d logS

d logM
5

d21

d22 S 11
z~d22!

2~2p!d22
r0

d221O~r0
2(d22)!D .

~6.6!

This shows explicitly that the thermodynamic nature of t
black hole changes as we start increasing the mass, s
d logS/d logM clearly characterizes the thermodynamic
That d logS/d logM increases can be understood from t
general formula@21#

d logS

d logM
5

d21

d222n
, ~6.7!

and the fact thatn.0.
As advocated in@21,22# it is useful to depict the black

hole branch in an (M ,n) diagram. It is therefore interestin
to find n as function ofM. However, instead ofM it is useful
to use the dimensionless parameter

m5
16pGNM

Ld22
5

16pGNM

~2p!d22
. ~6.8!
10401
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Here we have used that the circumference of the circle iL
52p in our units. We then get

n5
~d22!z~d22!

2~d21!Vd21
m1O~m2!. ~6.9!

Using Eq.~6.7! we get, furthermore,

d logS

d logm
5

d21

d22 S 11
z~d22!

2~d21!Vd21
m1O~m2! D .

~6.10!

The result~6.7! in a sense encaptures all of the correct
thermodynamics for black holes on cylinders since we c
integrate this relation. For completeness we write here
the result of the integration is

S~m!5c1m (d21)/(d22)S 11
z~d22!

2~d22!Vd21
m1O~m2! D

~6.11!

wherec1 is a constant given in Eq.~6.13!.

A. Thermodynamics for black hole copies

In @22# copies of the black hole branch were introduce
based on an idea by Horowitz@16#. Thekth black hole copy
of the black hole is the solution one gets by puttingk black
holes along the circle direction of the cylinder, with allk
black holes having an equal distance to each other. Ph
cally it is clear that all these copies are unstable and have
entropy the higherk gets. Indeed, this was found to be th
case for the leading order thermodynamics of black ho
and the copies in@22#. However, it is nota priori clear that
that continues to be valid for the corrected thermodynam
~6.3!–~6.5!

Denoting the entropy of thekth copy of the black hole
branch asSk we get using Eq.~6.10! that

logSk~m!5 logck1
d21

d22
logm1akm, ~6.12!

logck5 logc12
1

d22
logk,

c15
~2p!d21

4~d21!(d21)/(d22)Vd21
1/(d22)

, ~6.13!

ak5kd23a1 , a15
z~d22!

2~d22!Vd21
.

~6.14!

Physically we expect then thatSk(m),Sk8(m) if k.k8.
If we now consider two copiesk8,k we find

logSk~m!. logSk8~m!⇔m.
1

~d22!a1

logk82 logk

kd232~k8!d23
.

~6.15!

Now, if we call mmax the maximally allowedm for the for-
mula ~6.10! to be approximately correct, we can see ho
5-8
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largemmax has to be in order for the counter-intuitive situ
tion logSk(m).logSk8(m) to occur. This happens if

mmax.
1

~d21!a1

2 log~k8/k!

12S k8

k D d23 . ~6.16!

The minimum of the right-hand side is atk8/k→1, so we get
that

mmax.
2Vd21

~d23!z~d22!
. ~6.17!

For d55 this givesmmax.22 which seems unreasonab
large as one also can see from the considerations in Sec.
The corrected thermodynamics~6.10! is thus not in contra-
diction with the expected physical properties of the bla
holes copies.

VII. PHASE DIAGRAM FOR BLACK HOLES
AND BLACK STRINGS

As mentioned in the Introduction one of the motivatio
for finding the metric for black holes on cylinders is to ge
better understanding of the phase structure of black obje
e.g. black holes and strings, on the cylinder. As advocate
@21,22# it is useful to draw the (M ,n) phase diagram in orde
to understand this phase structure.

In @21,22# the (M ,n) phase diagram for thed55 case
was drawn. The phase diagram included the uniform bl
string branch and the non-uniform black string branch fou
numerically by Wiseman@14#. Using our results on smal
black holes, we can now put in part of the black hole bran
in this (M ,n) diagram. From Eq.~6.9! we compute that for
d55

n.0.017m.0.040
M

MGL
. ~7.1!

Here we also listedn as a function ofM /MGL using that the
Gregory-Laflamme mass ismGL52.31 for d55 @9,10# ~see
@21# for the explicit numerical values ofmGL). Using Eq.
~7.1! we have depicted the three known phases of black
jects in Fig. 1.

FIG. 1. (M ,n) phase diagram ford55 containing the black
hole branch, the uniform string branch and the non-uniform str
branch of Wiseman.
10401
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A comment is in order here. In Fig. 1 we have continu
the linear behavior ofn as a function ofM all the way up to
M5MGL . To see why we expect~7.1! to be approximately
valid up to M5MGL , we consider the functionF(r,u) in
Eq. ~3.11!. We have included the first correction inF(r,u)
but not the second one. The value ofr for which the second
correction is of equal size as the first correction is given
r258p2z(d22)/@(d21)(d22)z(d)#. For d55 this gives
that not including the second term inF(r,u) is a good ap-
proximation forr!2.8. In terms of the horizon radius thi
means thatr0!2.8. Thus, we see that Eq.~7.1! should be
valid for r0

3!21 which translates tom!9 and, furthermore,
to M!4MGL . This, therefore, makes it likely that Eq.~7.1!
is valid to a good approximation up toM.MGL .

VIII. DISCUSSION AND CONCLUSIONS

The main results of this paper are as follows:
We have found the complete metric for small black ho

on cylindersRd213S1. For r̃@r0 the metric is given by Eq.
~4.9! while for r0<r̃!1 the metric is given by Eqs.~5.3!,
~5.4!. The metric is valid to first order inr0

d22, which means
to first order in the mass.

We have found the corrected thermodynamics using
metric ~5.3!, ~5.4! The corrected thermodynamics is Eq
~6.3!–~6.5!. We can summarize the corrected thermodyna
ics in the formula~6.10!

d logS

d logm
5

d21

d22 S 11
z~d22!

2~d21!Vd21
m1O~m2! D ,

wherem is the rescaled mass in Eq.~6.8!.
We obtained in Eq.~6.9! the corrected relative binding

energyn which we found to increase when increasing t
mass. If we allow variations of the circumferenceL of the
cylinder, the first law of thermodynamics isdM5TdS
1nML21dL @22,23#. Therefore, a non-zeron means that the
black hole does not behave point-like~a point-like object
would havedM50 under a variation ofL). Qualitatively,
this means that the physics of black holes on cylinders
governed by the shape of the event horizon rather than
of the singularity.

The fact that we were able to find the complete met
describing small black holes can be taken as a confirma
on a basic assumption about the nature of black holes:
black holes obey the principle of locality.

The ‘‘principle of locality for black holes’’ means her
that we believe that sufficiently small black holes should n
be influenced by the global structure of the space-time. Th
for any locally flat space-time it should be so that small bla
holes behave like in flat space. For a black hole on the c
inder Rd213S1 this means that as the massM→0 it be-
comes more and more like a (d11)-dimensional Schwarzs
child black hole. Using, for example, Eq.~6.7!, this
assumption on black holes on cylinders is seen to be equ
lent to the assumption thatn→0 for M→0. That we in this
paper are able to find a metric for small black holes is thu
non-trivial consistency check on this assumption.

g

5-9
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A connected assumption is the one of Sec. II C that as
black hole becomes smaller it behaves more and more li
point-like object. This assumption leads to the predict
~2.22! of the Fourier modes for the complete black ho
branch, as seen in Sec. II C. The argument of Sec. II C u
thatn→0 for M→0 and that Newtonian physics should ta
over most of the space-time asM→0. Again, that we found
the complete metric for small black holes is a non-triv
check on these arguments. It seems, therefore, reasona
expect that the complete black hole branch has the Fou
modes given by Eq.~2.22!.

We have also seen that the ansatz~2.10! proposed in@15#
and proven in@18,22# is highly successful in describin
small black holes. This paper can therefore be seen
confirmation on the usefulness of this ansatz.

The success of the methods of this paper makes it na
to ask whether they can be continued and one can find hi
order corrections to black holes on cylinders. We believe t
indeed is the case.

Obviously, finding more corrections would be highly in
teresting in view of the ongoing discussion on which s
nario of the black hole/black string transitions is the corr
one. That is unfortunately still unclear, even after the num
cal work on black holes on the cylinderR43S1 in @24,25#.

Finally, we comment that the non-zero relative bindi
energy that we found for small black holes on cylinde
means that the so-called ‘‘uniqueness hypothesis’’ of@21,22#,
stating that there only exists one neutral and static bl
object for a givenM andn, still seems to hold for black hole
and strings on cylinders. If the relative binding energy wou
have been zero the uniqueness hypothesis would be vio
due to the black hole copies~see@22# and Sec. VI!.

Note added. Results on small black holes on cylinders th
overlap with the results of this paper were announced
@23,24# to appear in the near future in a paper by
Gorbonos and B. Kol.
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APPENDIX A: THERMODYNAMICS IN THE „R,v… AND
„r̃,ũ… COORDINATES

Thermodynamics in the„R,v… coordinates

We review here the thermodynamics in terms of the (R,v)
coordinates defined by the ansatz~2.10!, as found in@15#.
Define

Ah[A~R,v !uR5R0
, ~A1!

which, as shown in@15#, is independent ofv. Let, further-
more, the asymptotic behavior ofK(R,v) for R→` be writ-
ten as8

8Note here that with Eq.~A2! as the behavior ofK(R,v) for R
→` we get thatA(R,v)512x(R0

d23/Rd23)1O(R22(d23)) from
the equations of motion@15#.
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K~R,v !512x
R0

d23

Rd23
1O~R22(d23)!. ~A2!

Then we have, using Eqs.~2.8! and ~2.9! with Eqs. ~2.5!–
~2.7! @15,21#

M5
Vd22

8GN
R0

d23~d21!~d23!

d222n
, n5

12~d22!~d23!x

d222~d23!x
,

~A3!

T5
d23

4pAAhR0

, S5
2pVd22

4GN
AAhR0

d22 . ~A4!

Equations~A3! and ~A4! give the thermodynamics of solu
tions described in the ansatz~2.10!.

It was derived in@22,23# that the first law of thermody-
namics

dM5TdS ~A5!

holds for the black hole solutions. Obviously on the bla
hole branch we can consider all the quantities as being fu
tions of R0 only. Therefore, we can express Eq.~A5! as
dM /dR05TdS/dR0. Thus, in terms of the above define
quantitiesAh andn the first law is equivalent to

1

2

R0

Ah

dAh

dR0
5

d21

~d222n!2
R0

dn

dR0
2

12~d22!n

d222n
. ~A6!

Thermodynamics in the„r̃,ũ… coordinates

We review here the thermodynamics in terms of the (r̃,ũ)
coordinates defined by Eq.~3.6!. Define

Ãh[Ã~ r̃,ũ !u r̃5r0
. ~A7!

The thermodynamics is then

M5
Vd21

16pGN

r0
d22

~d21!~d22!

d222n
, T5

d22

4pr0
AÃh

,

S5
Vd21

4GN
r0

d21AÃh. ~A8!

We note that forÃh51 andn50 this thermodynamics is tha
of a Schwarzschild black hole ind11 dimensions.

The first law in the form~A6! gives

1

2
r0~ log Ãh!85

~d21!n

d222n
1

d21

~d222n!2
r0n8, ~A9!

where the prime denotes the derivative with respect tor0.
This relation is of importance in the text.

APPENDIX B: DERIVATION OF GENERAL SPHERICAL
METRIC

We start with a (d11)-dimensional metric of the form
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ds252 f dt21 f 21eqdr̃21eq2(d22)ur̃2dũ2

1eur̃2sin2ũdVd22
2 , f 512

r0
d22

r̃d22
, ~B1!

with q5q( r̃) andu5u( r̃), i.e. without anyũ dependence
We see that Eq.~B1! is in the form of the ansatz~3.6! with
Ã5eq and K̃5eu. We want to analyze the solutions of th
vacuum Einstein equations with the metric~B1!

FromRr̃ ũ50 we immediately get thatq85(d21)u8. We
can therefore writeq5s1(d21)u where s is a constant.
Write now dVd22

2 5df1
21sin2f1df2

21•••1sin2f1•••

3sin2fd23dfd22
2 , where f1 , . . . ,fd22 are the angles o

Sd22. If we consider the Einstein equationR f1

f1 50 it is easy

to see that equation only can be satisfied provideds50.
Therefore, the metric~B1! reduces to

ds252 f dt21 f 21e(d21)udr̃21eur̃2~dũ21sin2ũdVd22
2 !,

f 512
r0

d22

r̃d22
. ~B2!

We now consider the solutions of the vacuum Einstein eq
tions for this metric, still withu5u( r̃). The remaining non-
trivial Einstein equations gives the two equations

u92
d23

r̃
u82

d22

2
~u8!250, ~B3!
10401
a-

S 12
r0

d22

r̃d22D u91
d21

r̃
u82

r0
d22

r̃d22

1

r̃
u8

2
2~d22!

r̃2
~e(d22)u21!50. ~B4!

Defining

G~ r̃ !5expS 2
d22

2
u~ r̃ ! D , ~B5!

we see that Eq.~B3! becomes

G92
d23

r̃
G850. ~B6!

The most general solution to this equation is

G5c1rd221c2 , ~B7!

with c1 and c2 being arbitrary constants. Setting~B7! into
~B4! we get that Eq.~B4! is fulfilled if and only if

r0
d22c1c21c2

251. ~B8!

Thus, we get that the most general vacuum solution w
metric ~B2! is given by

expS 2
d22

2
uD5

12w2

w

r̃d22

r0
d22

1w, ~B9!

wherew is an arbitrary constant. This means that the m
general vacuum solution with metric~B1! is given by q
5(d21)u and ~B9!.
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