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Small black holes on cylinders
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We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in
d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders
proposed in J. High Energy Phy85, 032 (2002. We use the new metric to compute corrections to the
thermodynamics which is seen to deviate from that of te- {)-dimensional Schwarzschild black hole.
Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We
discuss the consequences of these results for the general understanding of black holes and we connect the
results to the phase structure of black holes and strings on cylinders.
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I. INTRODUCTION been explored from many points of view. Gregory and

Laflamme[9,10] discovered that uniform black strings on
Neutral and static black holes on cylinder@?1x St cylinders, i.e. strings that are wrapped symmetrically around
have a more interesting dynamics and richer phase structuff® cylinder, are unstable to linear perturbations when the

than black holes on flat spad¥. Neutral and static black Mass of the string is below a certain critical mass. This was
holes in flat space are for a given massiniquely described interpreted to mean that a light uniform black string decays

by the Schwarzschild solution with mass. With black to a black hole on a cylinder since that has higher entropy.

holes on cylinders we can form a dimensionless quantit lowever, Horowitz and Maedgl1] argued that this transi-
. . : . tion should have an intermediate step in the form of a light
since the radius of the cylinder gives us an extra MacroscopiCy . itorm black string. Such a non-uniform string branch

scale in the system. This means that the behavior of the blagl¢, ot peen found, but a new branch of non-uniform strings
holes can depend highly on the value of such a dimension;aq heen found bj2—14. This new branch of non-uniform
Ieds_slqua{]tlty. This ties tpgether with the'fact that the cyhndersmngs seemingly does not exists for the mass range when
R®"*XS" has a non-trivial topology since it has a non- the yniform string is classically unstable.
contractible cycle. This makes it possible for the black hole  several proposals for the phase structure of black objects
to grow so big that its event horizon can “meet itself” acrosson cylinders have been put forward1,13,15-2%° In
the cylinder. It, moreover, makes it possible to have othe[21,22 a new phase diagram, th#(n) phase diagram, was
types of black objects, such as, for example, black stringproposed as a tool to understand the phase structure of black
which have an event horizon that wraps across the cylindebbjects on cylinders. Herd is the mass and is the relative
The fact that the phase structure of black holes on cylinbinding energy. A similar proposal for a phase diagram was
ders is richer than, for example, the Schwarzschild blackmade in[23]. One can thus formulate the main goal of this
holes, can also be attributed to the fact that the cylindefield of research as follows: to draw the completd,()
space-timeM 9x St is not maximally symmetric unlike the phase diagram depicting all the possible phases of black ob-
Minkowski, de Sitter and anti—de Sitter space-times. Untiljects on cylinders.
now, black hole solutions have only been found for maxi- Finding the solution for black holes on cylinders is there-
mally symmetric space-times or for other highly symmetricfore part of the larger question of understanding the phase
space-times. In particular, solutions describing black holestructure of black objects on cylinders. Numerical studies of
on R?x St have been founfil—4] using the Israel-Khan so- black holes on the cylindeR*x S' was recently done in
lution [5]. However, theR?x St cylinder is very different [24,25, but it is nevertheless still desirable to get a better
from the R9~1x St cylinders ford=4 since for themM?®  analytic understanding of black holes on cylinders in order to
X S space-time there are enough killing vectors to find theprovide definite answers to the questions regarding the phase
solution using the construction of We6]. For M xSt structure of black holes on cylinders.
with d=4 there are instead too few killing vectors to find a  Progress towards finding a solution for black holes on
Wey! solution[7] which also is reflected in the fact that the cylinders was made ifiL5] where an ansatz was proposed for
metric for black holes on such cylinders does not belong tanetrics describing black holes on cylindeit§~*x S' with
an algebraically special clag8]. d=4. In[22] it was proven that any neutral and static black
The rich phase structure for black objects on cylinders haiole on a cylinder can be put in this ansatz. The proof was a
generalizing of a proof of Wisemafi8]. However, even
though the ansatz ¢fL5] is highly constrained the equations
*Electronic address: harmark@nbi.dk of motion are still very hard to solve.
ith a black hole on a cylindeR?~1x S! we mean a black hole In this paper we consider therefore the more tractable
in a (d+ 1)-dimensional space-time that asymptotesid x St far
away from the black hole, where\ ¢ is the d-dimensional
Minkowski space-time. 2Other recent and related work includes R¢&6—34.
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problem of finding a metric describingmall black holes on  (j.e. pure gravity solutionsthat asymptotes td19x St i.e.

cylinders, i.e. black holes on cylinders with a small mass. Weyl| black objects on the cylindeR?"*x S, according to

use the ansatz ¢fl5] and find a metric describing the com- their asymptotic behavior. In this section we review the ideas

plete small black hole space-time, from the horizon to theand results 0f21,27 that are relevant to this paper.

asymptotic region far away from the black hole. In the following we define the physical parameters that
We use our new solution for small black holes on cylin-one can measure for any solution asymptoting\id'x St.

ders to find the corrected thermodynamics. The thermodywe parametrize here the metric for the flat space-timé
namics becomes that of a Schwarzschild black holelin xs! g5

+1 dimensions when the mass goes to zero. But it deviates

from the Schwarzschild black hole thermodynamics once the ds?=—dt?+dr?+r2dQ3_,+d2, (2.1
mass is non-zero. We find, furthermore, the relative binding

energy and draw theM,n) phase diagram with the black Wwith t being the timer the radial coordinate in thB~* part
hole branch in the cas#=5. andz the coordinate foS! with periodL =27R.

The structure of the paper is as follows: In Sec. Il we In the rest of the paper we sBt=1 (so thatL=2m) to
introduce the basic tools necessary for constructing the smagimplify our expressions. Thus,andz are dimensionless in
black hole solution. In Sec. Il A we first review the measure-the following: i.e.r =" qq/Ry and zpe,= zoq/Ry. More-
ments of asymptotic quantities ¢21]. We then review in over, z has period 2r below.

Sec. Il B the ansatz df15] for black holes on cylinders. In To define our asymptotically measurable parameters we
Sec. Il C the Fourier modes of the black hole branch areonsider Newtonian matter with an energy momentum tensor
found. Using this, we obtain the flat-space limit of the black

holes on cylinders in the specific ansatz. Too=p, T,7=—Db. 2.2

In Sec. Ill we modify the ansatz by changing the coordi- i _ oo
nates. This proves useful for constructing the small blackVe define the massl and the relative binding energyby
hole solution. After defining the new coordinates we subse- 1
quently consider the flat space limit of the ansatz with the M :f di%p(x), n= _f d9xb(x). (2.3
new coordinates. In Appendix A the thermodynamics of both M
coordinate systems is considered. i )

In Sec. IV we take the first step towards constructing thé\ote that we can use to define the tensiov=nM/L,
small black hole solution by finding the first correction to flat Which is the tension a string would have if one had a string
space far away from the biack hole. In Sec. IV A we find theWith the sameM andn as the black hole. This is used as an
correction by first considering an arbitrary Newtonian grav-alternative parameter toin [23]. See alsd33,34 for mea-
ity potential and then using the result for the specific blackSurements of the tensich o .
hole case. In Sec. IV B we then transform the result to the We define, furthermore, the two gravitational potentials
ansatz in the new coordinate system.

In Sec._V we use the results of Sec. _IV to find the com- VZ(DIBWGN;ZQ, V2B=— 87Gy b, (2.4
plete metric for small black holes on cylinders. We also use d-1 d-1

the results of Appendix B where general spherical metrics ) ) )
are considered. whereGy is the d+ 1)-dimensional Newtons constant. Due

In Sec. VI we use the metric of Sec. V to find the cor- t0 the conservation of the energy-momentum tensor we re-
rected thermodynamics of black holes on cylinders. This igluire thatd,b=0. This means thav=b(r), i.e. b only de-
used in Sec. VIl to draw theM,n) phase diagram for black Pends orr. Away from the mass distribution we have tfen
holes and strings on cylinders in tie=5 case. "

Finally, we conclude the paper in Sec. VIII. d-2 5> h(kr

N _

@(r,Z)Z—m4 “ rd—SCOS(kZ)Qk,
Il. PRELIMINARIES 2.9
In this section we lay the groundwork necessary to con- 1 4Gy nM
struct the corrected black hole on cylinder solution. In Sec. B(r,z)= (d=1)(d—3) Oy, fd-3" (2.9

[l Awe review how the asymptotically measurable quantities
are defined. In Sec. Il B we present the general ansatz for thv?/ith
metric of black holes on cylinders. In Sec. Il C we give what
the Fourier modes of black holes on cylinders should be and 1
use this to describe the flat-space limit of the ansatz for the h(x)=2"0@"52 _— __x(@=3) . (x), (2.7
metric in detall d-3 @2

. I‘ 2

A. Asymptotically measurable quantities

In [21,22) a program was set forth to categorize all static 3Here Q=27 "D3'[(k+1)/2] is the volume of a unitk
vacuum solutions of higher-dimensional general relativitysphere.
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whereK(x) is one of the modified Bessel functions of the whereA(R,v) andK(R,v) are two functions specifying the
second kind(in standard notation The coefficientsp,, k  solution. The ansatz2.10 was proposed if15] for black
=0, are the Fourier modes of the mass distribution. Clearlyholes on cylinders and was proven to be corred¢?#] gen-
00=M/Qy_,. eralizing a proof of Wiseman ifl8].

From the above we see that for an arbitrary static mass The properties of the ansaf2.10 were extensively con-
distribution of Newtonian matter onM 9x St which is  sidered in[15]. It was found thatA(R,v) can be written
spherically symmetric olR?~? the measurable parameters explicitly in terms of K(R,v) thus reducing the number of
are the mas#/, the relative binding energy, and the Fou- unknown functions to one. The function&(R,v) and
rier modesg,, k=1. We now turn to how to measure these K(R,v) are periodic inv with period 27. Note thatR=R,

parameters. defines the location of the event horizon for the black hole.
Independently of the gauge, we have that ghecompo- The asymptotic region, i.e. the region far away from the
nent of the metric to first order iGy is [21] black hole, is located aR—o. We impose the conditions
thatr/R—1 andz/v—1 for R—. This also means that
gi=—(1+2d+2B). (28 AK—1 forR—w.

We review the thermodynamics of the ansé2z10 in
If we work in a coordinate system where the leading correcAppendix A.
tion to g,, for r— is independent of we, moreover, have As explained in[15] and in the Introduction, finding a
that[21] solution to the equations foA(R,v) and K(R,v) is very
hard. The equations seem highly non-linear and so far no
1 4Gy [1—(d—2)n]M simplifications have been found. However, if we consider
0,,=1+ (d—1)(d-3) O -3 small black holes on cylinders, i.e. small masdés the
d-2 r equations simplify, as we shall see in the following. We
+O(r2d=3)), (2.9  therefore focus in the following on solving the equations for
A(R,v) andK(R,v) to leading order iR, (the Ry— 0 limit
is the leading correction tg,, for r—o. Therefore, using isdgguivalent to theM —0 limit since M is proportional to
Egs.(2.8) and(2.9) we see that for any given static methit; Ro ).
nandg,, k=1, can be measured.

In particular, we define the mad8, the relative binding C. Finding the Fourier modes and the flat-space limit
energyn and the Fourier modesy , k=1, for any static pure
gravity solution asymptoting tov 9x St as what we mea-
sure by applying Eqg92.8) and(2.9) with Egs.(2.5—(2.7).*
We apply these results on the black hole on cylinder solu
tions below.

We now consider the limiM—0 for a black hole on a
cylinder. Physically, it is clear that for very small masses the
black hole should behave as a point particle as seen from an
observer standing away from the black hole in the weakly
curved region of space-time. Thus, ldls—0 the Newtonian
potential ®(r,z) should become that of point masses on a

B. Ansatz for black hole solution cylinder. By the same token the relative binding enengy

In order to find a metric for black holes on cylinders Should go to zero, since the interaction of the black hole with
R9-1x St it is important first to find an ansatz for the metric itself across the cylinder becomes smaller and smaller as the
that only has a limited number of free functions. Progress ifPlack hole becomes smallésee alsq 15] for a quantitative
this direction was made if22] where it was shown that the discussion of this We thus get that folM — 0 the Newtonian
metric for any neutral and static black hole on a cylinderPotential is
R9~1x S which is spherically symmetric oft?"* can be

. ) 87G\yM
written in the form d(r,z =— NT ¢ r,z), 2.1
(r2=-Gpa,F 2 (.13
A
ds?=—fdt?+ ?dR2+ Kd72d02+ KR2dQ3Z_,, with F(r,z) given as
F(r,2) i ! (2.12
d-3 r,z)= —. .
foq Ro (2.10 W [r2+(z_277k)2](d 2)/2
Rd*3’ '

Moreover,B(r,z)/(GyM)—0 for M—0 sincen should go
to zero. Note that we assume the black hole singularity to be
“Notice that the measurements of the physical quantities associocated at (,z)=(0,0). _ _

ated with the sources of the gravitational field for solutions with The pOtentl'_'leZ-l]) IS easily found using Newtons law of
event horizons are defined in analogy with the results for nongravity for points particleduse, for example, Eq(2.4)].
gravitational Newtonian matter. The reason behind this is the prinThus, the only thing we have used here is that ¥br-0
ciple that any source of gravitation affecting the asymptotic regionNewtons law of gravity governs almost all of the space-time,
the same way should also have the same values for the physicakcept the vanishingly small part close to the black hole, i.e.
parameters associated with the sources of the gravitational field. around ¢,z) =(0,0).
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We can expandF(r,z) in Fourier modes as pd-2 pd-2
) B ﬁrv—mﬂzF, ﬂzv———(d_S)kdﬁrF.
F(r2)=—%|1+23 h(krcosks) |, (2.13 (2.20
r k=1

This in turn gives

whereh(x) is given by Eq.(2.7) and where we defined F(r.2)26-2160-3)

Ao(r,2)=(d—3)%kg 24"

oot 472 8q- (2.14 (3F)2+(a,F)2
27 d—3 045 ' (2.22)
Using then Eq(2.13 we see that we can find the Fourier Note that bothAy(R,v) andKy(R,v) are periodic inv with
modesg, of ®(r,z) in theM—0 limit. period 2. We note that the above flat-space coordinate sys-

We now consider the consequence of this observation foiem is precisely that proposed fih5] for the flat-space limit
black hole solutions in the ansat2.10. Taking theM—0  Of black holes on cylinders.

limit is clearly the same as taking thi&,—0 limit. Define Finally, we note that using Eqs$2.17), (2.10, (2.8) and
(A3) we see that Eg.2.17) in fact has the consequence that
Ao(Ryv)= lim A(R,v), Ky(R,v)= lim K(R,v).

Ry—0 Ry—0 P _ n 87TGNM
(215) (raz)—"_B(r!Z)__ 1_d_2 (d_l)Qd,lF(r,Z),
We then see from the ansd®2.10 and from(2.8) that as (222
consequence d2.11) we get also for finite masses, which means that given a black hole
o3 solution with a mas#! and binding energy we can use Eg.
Ry 167GyM (2.22 to find the Fourier modew,. This ensures the
lim Ko(r,2)4=32= [im ————F(r,2). : K
Ro—0r9 2 o(1:2) Roold— 1)y (r.2) uniqueness of the black hole brarth.
(2.1

IlI. ANSATZ IN NEW COORDINATE SYSTEM

Since from Eq(A3) we have In this section we define a new set of coordinates based

Q. . (d—1)(d— on the R,v) coordinates defined by the ansg2z10). As we
d—2 (d=1)(d=3) , 4 - . ;
= 0 explain in the following, these new coordinates are very use-
8Gy d-2 ful to describe the metric near the horizon of a black hole on
a cylinder.
Consider a small black hole on a cylindéf 1x St. We
can think of this black hole as a one-dimensional array of
black holes inRY, the covering space faR%~1x St. If we
make the size of the black holes very small the metric near a
particular black hole in the array should be like a
(d+1)-dimensional Schwarzschild black hole. The metric
for a (d+1)-dimensional Schwarzschild black hole can be

in the Ry,— 0 limit, we get that
Ko(r,2)=r%kg @7 3F(r,2)2073), (2.17

This result will be important below, since the solution to the
equations forK(R,v) can be thought of as a correction to
Ko(r,z) in Eq. (2.17). Thus, Eq.(2.17) is the zeroth order

part of K(r,z) and below we find the leading correction to

written
K(r,2).
Notice that by using Eq.2.17) we can find the flat space d-2 d-2\ -1
limit Ry—0 of the black hole on cylinder solutions. Using d32=—<1— Ps_)dt2+ 1— Ps ) dp?
the definition(2.15 we see thatM 9x S! has the flat space pd=? pd2
metric +p2(d6%+sinPed02 ). 3.0
ds?= —dt?+ AgdR2+ ??2dv2+ KoR2dQ2 . We have written out th&"~* part in an angle and ag’~?
0 part since we have a gener@alO(d—1) symmetry of our
(2.18 small black hole solutions. We now want to construct a new
ansatz for small black holes that asymptotes to the metric
Comparing this with Eq(2.1) we see that (3.1) near the horizon a1 —0.
To do this, we first notice that the flat-space limit of the
RI-3— Kq 2.19 (d+1)-dimensional Schwarzschild black hole metcl) is
F(r,2)° ' the spherical coordinate system a9 with metric

From requiring a diagonal metric in th&(v) coordinates it

is not hard to show that the resulting integrability condition SThis observation is considered from another point of view in
onv is solved by{15] [35].
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ds?=—dt®+dp?+ p?d 62+ p2sirfdQ’5_,. (3.2 Ao(p,®)=lim A(p,8), Ko(p,d)= lim K(p,9).
Ry—0 Ry—0
We can also use this coordinate system.fdr®x St if only (3.9
we remember that\ 9! is the covering space. We can _ _
therefore relate the spherical coordinatpsé) to the cylin-  Using Egs.(2.19 and(2.20 together with Eq(3.4) we see
drical coordinatesr(z) defined via the metri¢2.1) by the that the flat space coordinateg, §) in terms of the p,6)

relations coordinates are given by
r=psinfd, z=pcosé. (3.3 _ 1
L) (3.9
Note here that ther(z)=(0,0) point, where the small black ps
hole singularity is located, correspondspte O in the spheri- 43

cal coordinates. _ o _ (Sin’é)d—zﬁp'é:p (sin6)d-24,F,
We now want to define the new coordinaiesand ¢ in d-2

terms of the R,v) coordinates so thap=p(R) and @

~ . i ~ ~ d-1
=6(v) along W|th_the co_ndltlon thap/p—1 and 6/6—1 (sin8)929,6=— 5 (sina)d‘zapF.
for R—0 with Ry=0. It is not hard to see that all these
requirements are met by defining,@) from (R,v) accord- (3.10

ing to the relations . ) . . .
HereF(p, 6) is the functionF(r,z) defined in(2.12) written

in (p,0) coordinategdefined in(3.3)].
RI3=kyp! 2, v=m— —kd f dx(sinx)9472. We now want to study the flat space mett®7) near the
(3.4) point p=0, i.e. forp<1, since that is where the black hole
is located. Clearly, from Eq3.9), p<1 is equivalent top

Note here thath=0 corresponds te == and = to v <1. Thus, as a first step, we need to understayal 6) for
p<1. Expanding=(p,6) for p<1 we get

= — 1.
If we in addition define the two functionA(p,#) and . .
KRG b 1 2{(d-2)  (d)
(p )OI y3 F(p,H)—pd72+ 22 + (ZW)d(d—Z)[d cog6—1]p?
Ed 2; (kap)#"UA, K=sirfh(kgp) 77K, +0(p"). (3.1

39 One can now use the expansi@?11) of F(p,#) for p<1 to
one can check that the ans&®10 now can be written in  find the relation betweerp(6) and (o, ) for p<1. We get
the (p, ) coordinates as

A
ds’= ~fdt?+ dp

pzfa( 1+ | 2a=2) a2

A 202m 0(5")), (3.12

op*d6°+Kpsin’6dQf_,,

4¢(d ~ ~
d-2 sirf9=sirf6| 1+ &« )co§79pd+0(pd+2) :
f=1- 20 (3.6 )¢

pd ~d-2" ' (3.13
wherepd2=k;*R373. We review the thermodynamics of One can easily obtain the higher order corrections as well.

the ansatZ3.6) in Appendix A. However, those will not be of importance in this paper.

Finally, we are ready to find the expansions/yf(p, 6)

A. Flat space limit of (p,8) coordinates and Ko(p,0) for p<1. From Egs.(2.17) and (2.21) along

ith Eq. (3.4
Take now the flat space limjig—0 limit of the metric with Eq. (3.4) we get

(3.6). This gives the metric

= ®Here g(s) is the Riemann zeta function defined d%§s)
20N A2 Ao 2 2 =3
ds?= —dt*+Agdp? +=—p?d 67+ Kop?sinf0d0 7 _,, :
K0 7Note that Egs.(3.10 and (3.13 explicitly show that6=0 is
3.7 equivalent tod=0. In terms of the R,v) coordinates this shows
that Ag(R,v) andKy(R,v) are periodic inv with period 2, also
with near the location of the black hole.
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2 .
-~  p’sife . e e -
Ko 2si?a’ Ao=[(3,p)*+p*Ko " 2(3,6)%] 7.
(3.19
Using this with the expansion8.13 we get
e 4(d—1)¢(d—2)~ -
Ao(p,0)=1+ ———————p9 2+ 0(p%), 3.1
o(p,0) +(d—2)(217)d’2p +0(p%) (3.1
~ o~~~ 4,(d-2) - ~
Ko(p,0)=1+ (d=2 p? 2+ 0(pY), (3.1

(d—2)(2m)?~2

for p<1. We included here the corrections to orgiér 2.
The following corrections at ordgr® depends ord.

IV. CORRECTED METRIC AWAY FROM BLACK HOLE

PHYSICAL REVIEW D69, 104015 (2004

1
R\=-V?®, R’,=R}=R’} =.—5V’®, Rg=0.
4.2

We can, moreover, restrict ourselves to potentidls
=®(R) which does not depend an, since in the end we
will set ®=—1(RI3/R4~3). Note that then

4.3

d-2
"+ =" |,

VZq):i
A R

0

where the prime refers to the derivative with resped.téve
now want to solve the Einstein equatiof#s?2) to first order
in Gy.

The ansatz for the metric is

ds?=—(1+2®)dt?>+ (1—2u+2g9)A,dR?

+[1+2g—(d—2)2h]

K’?Ezdvz
In this section we present the corrected metric for small °
black holes for the region away from the black hole. This is
the region governed by the Newtonian limit of the Einstein
equations. This gives a first-order correction to the flat-spac&here u, g and h are undetermined functions. The ansatz
metric that we use in Sec. V to construct the complete metri¢4.4) is chosen so that fo=u=—3(R§ %R?"3) it re-
for small black holes. duces to a form consistent with the general ancati). The
In Sec. IV A we find the general correction to the metric idea is now to findu, g andh as functions of® and®’ so
for an arbitrary Newtonian gravity potential in the ansatzthat the Einstein equatior(d.2) are satisfied to first order.
(2.10. In Sec. IV B we transform the result of Sec. IVAto  Sinced3g is present inrR; but 93u and 93h are not we
the (p, ) coordinates. see thag=g,P since otherwise we will have @" term in
RRR which cannot be canceled by other terms. Similarly,
since R’, have 93g and #3h terms but not a/3u term we

need thah=h,;®. Thus, our ansatz fau, g andh is
Consider the Einstein equations for a general Newtonian

gravity potential® and a general binding energy potental

+(1+2h)KR?dQ3_,, (4.9

A. Solving for general Newtonian gravity potential

!

R
U:U]_(I)_(l—ul)mq) , h:hlq).
(4.9

Note that we use the above ansatz fpbto ensure thau
=® wheneverd=—1(R§¥/RI"3).

g=0:o,

1
Rtt:—VZQD—VZB, RZZZ(j_—ZV2q3+(d_2)VZB,

1
R', = R‘ﬁ; = d_—2V2<I>—VZB, (4.7 After various algebraic manipulations we find that the so-
! lution to the Einstein equationg.2) to first order is
whered; is one of the angles on tt&¢ 2 sphere. The aim in R | 1 1 R drAq
the following is to find a solution of Eq(4.1) for small U:—ﬁq) » 95 4=3 d—2+§ Aq ,
masses, i.e. foM — 0. This can then subsequently be used to
get the leading correction iR§ 3 to the metric for small 1 (1 RKg
black holes. h= d—3<d—2+§ Ko )(D. (4.6)

In Sec. Il C it is explained that—0 for M—0. This has
the consequence that white/(GyM) is finite for M—0
thenB/(GyM)—0 for M—0. We see then from Ed4.1)  ¢5ng previously in[15].
that we can neglect thg potential since it is small compa_red Setting thend = — 1(RS"3/RY"3) we find that the lead-
to thed potential forM—0. In other WOI’dS., any correctlpn ipg correction inRg_3 to the small black hole metric in the
to nonly appears as a second-order effect in the correction Oansatz(z 10 is given by
the metric. With respect to computing the first order correc- '

tion to the metric we can therefore effectively set0. (
1

Note that theR— 0 andR—< limits reproduce the results

1 Ry 3 A
~ (d—2)(d—3) Rd-3

Setting nown=0 we only have a Newtonian gravity po- a—
tential @ and there are no potentials for the binding energy.
In the (R,v) coordinates this gives the Einstein equations
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1 R3 R Ry

K=" a3 re 3¢

In conclusion, Eqs(4.7) and(4.8) describe the black hole
metric in the ansat#2.10 for R>R, whenRy<1.

B. Corrected metric in (p,®) coordinates

The leading correctior(4.7) and (4.8) is easily trans-
formed to the p, ) coordinates. This gives

<« P
A:AO_Z(

po 2
d——z);TzﬁﬁAo’

4.9

Therefore, Eq(4.9) describes the metrign the ansat£3.6)]
for small black holes on cylinders fgrsp, to first order in
p3~% whenpy<1.

Using now thep<1 expansion ofA, and K, found in
Egs.(3.195 and(3.16 we get

~ 2(d—1)¢(d—2) - _ ~
A=1 2 d-2_ d-2 d
+ (d—2)(277)d72 P pO ]+O(p )1

(4.10
~ 2¢(d—2)

K=1+ W[sz_z—Pg_z]+ O(p?).
(4.11

Thus, the function$4.10 and (4.11) describe the metric in
the ansatz3.6) for po<p<1. This result is used below to
find the metric of small black holes fary<p<1.

V. METRIC FOR SMALL BLACK HOLES ON CYLINDERS

PHYSICAL REVIEW D69, 104015 (2004
1— WZ ';)d— 2

A-ld-22d-1)] =g ~(d-2)/2—
d_
w2

+w, (.1

with w being a constant. Comparing E¢p.1) with Egs.
(4.10 and(4.11) we see then that

d—2
w=1+ a—)pd*2+ O(p3@=2),

2y 2 (5.2

In conclusion, the metric of a small black hole on a cylinder
for po<p<1 is given by the ansat.6) with the functions
A andK given as in Eqs(5.1) and(5.2).
We remind the reader that the metric for largeis given
by (4.9 in the ansatZ3.6) Thus, we have found the complete

metric, i.e. for allp=p,, for black holes on cylinders with
po<1 to orderpd 2. Since MopJ 2 this means that we
have found the complete metric for small black holes on
cylinders to first order in the mass.

We summarize the main result: fpp<p<1 the metric
of a small black hole on a cylindét®~*x S! is given by

ds?= —fdt?+f1G 2@ D/d-2)gp2

+GYA-2052(d82 +sirfed03_,), (5.3
d—2 27~d-2
Po ~ _1-wp "
f=1-2—, G(p)= =W
= EE
(d-2) . -
W e O ), 54

to first order inpd 2.

We notice thatv=1 in the metric(5.3) and (5.4) corre-
sponds to thed+ 1)-dimensional Schwarzschild black hole
metric (3.1), thus we indeed get that fgr,—0 the small
black hole asymptotes to thel{ 1)-dimensional Schwarzs-

child black hole. Moreover, thep(#) coordinates asymp-
totes to the p, #) coordinates in this limit as expected. In the
rest of the paper we consider the consequences of the small
black hole on the cylinder metri&.3) and(5.4) that we have

In this section we find the metric for small black holes on yptained.

cylinders.

In Sec. IV we found that fopy<p<1 the small black
hole is described by Eq$4.10 and (4.11) in the ansatz
(3.6).

VI. CORRECTED THERMODYNAMICS

In this section we find the corrected thermodynamics that

We now want to solve the vacuum Einstein equations fo[{'esults from the metric for small black holes on Cylinder

po<p<1. We first notice that the functions andK given
by Egs.(4.10 and(4.11) are independent off. This means
that we can také\ andK to be independent of for py<p

<1. This can easily be argued using a systematic expansi

in terms ofpd~%/p?-2.

Using now the result of Appendix B that the met(&.1)
has the vacuum solutions given by the metBc2) with the

function u given by (B.9), we get that forp,<p<1 the
functionsA andK in the ansat£3.6) are given by

(5.3), (5.4 Note that the general thermodynamics for the
ansatz(3.6) in (p, 8) coordinates is listed in Appendix A.
It is easily seen from Eq$5.1) and(5.2) thatA(p, 6) on

c)tJn'e horizon, as defined in EGA7), is

d-2

LAATVUAD) oy

A=1
h (d—2)2mi2”

(6.

From this we can find the leading correction to the relative
binding energy. This is done using E@9). We get
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(d—2)¢(d—2) Here we have used that the circumference of the circle is
= pd724 O(p3@~2)), (6.2 =2 in our units. We then get
2(2)42
R . (d=2)¢(d-2) 5
We thus see that the relative binding energis non-zero. n= mu+(9(ﬂ ). (6.9

Thatn becomes positive and not negative is expected since
one cannot have negative[36,37. As we shall see below Using Eq.(6.7) we get, furthermore,
the fact thatn is non-zero signals that the physics of black

holes on cylinders is different from that of black holes in flat 6logsS d-1 {(d—2) O
space. Slogu d—-2 2(d—1)Qd,l’U“ I
Using (6.1) and (6.2 in (A.8) we now get the corrected (6.10

thermodynamics .
The result(6.7) in a sense encaptures all of the corrected

thermodynamics for black holes on cylinders since we can

d—1)Q4_ d—
= %p%*( 1+ a_(&p$2+ O(pg(d‘z))), integrate this relation. For completeness we write here that
TGN 2(2) the result of the integration is
(6.3
{(d—2)
S(p)=cyu@ D=2 14 > "4 O(u?
4mpo|~ (d—2)(2m2"° ° ’ 6.17
(6.4 wherec; is a constant given in Eq6.13.
. lepdl< 1+ (d-1){(d-2) 02, o p2(-2)) A. Thermodynamics for black hole copies
- 0 _ 0 0 .
4Gy (d—2)(2m)?~? In [22] copies of the black hole branch were introduced,

(6.5 pased on an idea by Horowif26]. Thekth black hole copy

One can easily check that both the Smarr forn{@a,23 of the black hole is the solution one gets by puttinglack
(d—1)TS=(d—2-n)M and the first law of thermod)}nam- holes along the circle direction of the cylinder, with &ll
ics SM =T 58S holds black holes having an equal distance to each other. Physi-

We see that the corrected thermodynant@:8)—(6.5) be- cally it is clear that all these copies are unstable and have less

comes increasingly like that of a Schwarzchild black hole inSntropy the highe_k gets. Indeed, this was found to be the
ad+1 space-time ad—0, exactly as one would expect. case for the leading order thermodynamics of black holes

The correctiong6.3)—(6.5) thus encapture the departure of and the copies ih22]. quever, it is not priori clear that .
the thermodynamics of black holes on cylinders from that Ofthat continues to be valid for the corrected thermodynamics

: 6.3 (6.5
the Schwarzchild black hole. ( X
To see more clearly what this means for the thermody- Denoting the entropy of thth copy of the black hole

namics, we can compute branch asS, we get using Eq(6.10 that

d-1
log Se(w) =log e+ G log u+ayu, (6.12

slogS d-1 {d=2) 4, 2(d-2)
slogM -2 |+ ggmazf TR ]
(6.6)

1
logcy=logc,— mlog K,
This shows explicitly that the thermodynamic nature of the
black hole changes as we start increasing the mass, since (2m)d-1

dlogSéslogM clearly characterizes the thermodynamics. Ci1= T ) (6.13
That §log S6logM increases can be understood from the 4(d—1)@= K )Qd£1 )
general formuld21]
—d-3 __ -2
ologS d-1 a=k""ay, al_z(d—z)Qdfl'
SlogM _d—2-n" 6.7 6.14
and the fact thah>0. Physically we expect then tha_((#,)<sk,(ﬂ)_ if k>k'.
As advocated if21,27 it is useful to depict the black T We now consider two copiek’ <k we find
hole branch in ani{1,n) diagram. It is therefore interesting 1 logk’ — logk
to find n as function ofM. However, instead df/ it is useful l0g () >10g Sy ()& p> )
to use the dimensionless parameter (d=2)ay k-3 (k)93
(6.195
w= 167GyM = 167Gy ) (6.9 Now, if we call uy,y the maximally allowedw for the for-
Ld-2 (27)972 mula (6.10 to be approximately correct, we can see how
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na A comment is in order here. In Fig. 1 we have continued
03] el g oanch the linear behavior of as a function oM all the way up to
M=Mg, . To see why we expec¥.l) to be approximately
valid up toM=Mg, , we consider the functiof(p,#) in
0.2 —_ Eqg. (3.11). We have included the first correction i¥(p, )
E " but not the second one. The valuegfor which the second
1 correction is of equal size as the first correction is given by
p?=872{(d—2)/[(d—1)(d—2)¢(d)]. Ford=5 this gives
Bk hle branch that not including the second term i(p, 6) is a good ap-
s e B |\=/I proximation forp<2.8. In terms of the horizon radius this
means thapy<2.8. Thus, we see that E¢7.1) should be
FIG. 1. (M,n) phase diagram fod=5 containing the black valid for p8< 21 which translates tp.<9 and, furthermore,
hole branch, the uniform string branch and the non-uniform stringo M <4M g, . This, therefore, makes it likely that E€7.1)
branch of Wiseman. is valid to a good approximation up tfd=Mg, .

013

large pwmax has to be in order for the counter-intuitive situa-

. . . VIII. DISCUSSION AND CONCLUSIONS
tion logS(u)>log S/ (w) to occur. This happens if

The main results of this paper are as follows:

1 —log(k'/k) We have found the complete metric for small black holes
’“max>(d— 1)a, k'\d-3 616 4, cylindersR4-1x St. Forp> p, the metric is given by Eq.
Tk (4.9 while for po<p<1 the metric is given by Eqg5.3),

(5.4). The metric is valid to first order ip3 2, which means
The minimum of the right-hand side islkat/k— 1, so we get  to first order in the mass.

that We have found the corrected thermodynamics using the
metric (5.3), (5.4 The corrected thermodynamics is Egs.

P >L_ (6.17) (6.3—(6.5. We can summarize the corrected thermodynam-
T (d=3)¢(d=2) ics in the formula(6.10
For d=5 this gives uma>22 which seems unreasonably slogS d-1 7(d—2)

large as one also can see from the considerations in Sec. VII.
The corrected thermodynami¢8.10 is thus not in contra-

diction with the expected physical properties of the black ) )
holes copies. whereu is the rescaled mass in E@.8).

We obtained in Eq(6.9 the corrected relative binding
energyn which we found to increase when increasing the
mass. If we allow variations of the circumferenceof the
cylinder, the first law of thermodynamics i§M=TJS

As mentioned in the Introduction one of the motivations +nML™16L [22,23. Therefore, a non-zenomeans that the
for finding the metric for black holes on cylinders is to get ablack hole does not behave point-lika point-like object
better understanding of the phase structure of black objectsyould havesM =0 under a variation of.). Qualitatively,

e.g. black holes and strings, on the cylinder. As advocated ithis means that the physics of black holes on cylinders are
[21,22 it is useful to draw the1,n) phase diagram in order governed by the shape of the event horizon rather than that
to understand this phase structure. of the singularity.

In [21,22 the (M,n) phase diagram for thd=5 case The fact that we were able to find the complete metric
was drawn. The phase diagram included the uniform blacklescribing small black holes can be taken as a confirmation
string branch and the non-uniform black string branch foundn a basic assumption about the nature of black holes: that
numerically by Wisemarj14]. Using our results on small black holes obey the principle of locality.
black holes, we can now put in part of the black hole branch The “principle of locality for black holes” means here
in this (M,n) diagram. From Eq(6.9) we compute that for that we believe that sufficiently small black holes should not
d=5 be influenced by the global structure of the space-time. Thus,

for any locally flat space-time it should be so that small black

M holes behave like in flat space. For a black hole on the cyl-
”20017#20-04%- (7.9 inder R9-1x S! this means that as the mab—0 it be-

comes more and more like @+ 1)-dimensional Schwarzs-
Here we also listedi as a function oM/Mg, using that the child black hole. Using, for example, Eq®6.7), this
Gregory-Laflamme mass jgg =2.31 ford=5 [9,10] (see  assumption on black holes on cylinders is seen to be equiva-
[21] for the explicit numerical values ofig ). Using Eq. lent to the assumption that—0 for M—0. That we in this
(7.1) we have depicted the three known phases of black obpaper are able to find a metric for small black holes is thus a
jects in Fig. 1. non-trivial consistency check on this assumption.

— 2
Sloge _d—2\ T 2ta—na, A TOwI )

VII. PHASE DIAGRAM FOR BLACK HOLES
AND BLACK STRINGS
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A connected assumption is the one of Sec. Il C that as the Rd-3
black hole becomes smaller it behaves more and more like a K(Rov)=1—x 2_3
point-like object. This assumption leads to the prediction R
(2.22) of the Fourier modes for the complete black hole . .
branch, as seen in Sec. Il C. The argument of Sec. Il C use}'e" Xvezhave, using Eqe2.8) and (2.9) with Egs. (2.5~
thatn— 0 for M —0 and that Newtonian physics should take 7 [15.21
over most of the space-time & —0. Again, that we found d—sz,3(d_l)(d_3) 1-(d-2)(d—3)x

0

+O(R™2A73)), (A2)

the complete metric for small black holes is a non-trivial M= , nh= ,
check on these arguments. It seems, therefore, reasonable to 8Gn d—2-n d_z_(d_3)XA3
expect that the complete black hole branch has the Fourier (A3)
modes given by Eq2.22. d—3 27 0)
We have also seen that the ans@A0 proposed if15] - - — ﬂ\/_ d—2

- ] : o T , S ARy “. (A4)
and proven in[18,22 is highly successful in describing 47r\/A_hRO 4Gy
small black holes. This paper can therefore be seen as a _ )
confirmation on the usefulness of this ansatz. Equations(A3) and (A4) give the thermodynamics of solu-

The success of the methods of this paper makes it naturéiPns described in the ansat2.10.
to ask whether they can be continued and one can find higher It was derived in[22,23 that the first law of thermody-
order corrections to black holes on cylinders. We believe thafiamics
indeed is the case.

Obviously, finding more corrections would be highly in-

teresting in view of the ongoing discussion on which scey,q1qs for the black hole solutions. Obviously on the black

nario of the black hole/black string transitions is the correc, sie branch we can consider all the quantities as being func-
one. That is unfortunately still unclear, even after the numerizjong of R, only. Therefore, we can express E@5) as

cal work on black holes on the cylind@r'>xS* in [24,29. SM/S8Ry=T8S/5R,. Thus, in terms of the above defined

Finally, we comment that the non-zero relative b',nd'ngquantitiesAh andn the first law is equivalent to
energy that we found for small black holes on cylinders
means that the so-called “qniqueness hypothesis{?&f,_Zﬂ, 1 R, A, d—1 sn 1—-(d—2)n
stating that there only exists one neutral and static black s — =Ry ———5——_. (A6)
object for a giverM andn, still seems to hold for black holes 2An0Ry  (d—2-n)2 "OR,  d—2-n
and strings on cylinders. If the relative binding energy would o
have been zero the uniqueness hypothesis would be violated Thermodynamics in the(p,6) coordinates
due to the black hole copidsee[22] and Sec. V.

Note addedResults on small black holes on cylinders that
overlap with the results of this paper were announced it
[23,24] to appear in the near future in a paper by D.
Gorbonos and B. Kol.

oM =T5sS (A5)

We review here the thermodynamics in terms of thedj
oordinates defined by E¢3.6). Define

ARG a7

P=Pg"

The thermodynamics is then
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167Gy ° d-2-n ' N
APPENDIX A: THERMODYNAMICS IN THE  (R,v) AND 0
(p,6) COORDINATES 0
d-1 — ~
S= 4Gy, pS VA, (A8)

Thermodynamics in the R,v) coordinates

We review here the thermodynamics in terms of tRen)  We note that foA,=1 andn=0 this thermodynamics is that
coordinates defined by the ansa10), as found in[15].  of a Schwarzschild black hole i+ 1 dimensions.

Define The first law in the form(A6) gives
An=A(R,0)|r=r,; (A1) 1 ok ) (d—1)n d—1 ,
EPO( 0gA,)' = d—2—n+ (d—2—n)2p0n . (A9)

which, as shown if15], is independent ob. Let, further-
more, the asymptotic behavior K{(R,v) for R—o be writ- \\here the prime denotes the derivative with respegago

ten a8 This relation is of importance in the text.
8 . . APPENDIX B: DERIVATION OF GENERAL SPHERICAL
Note here that with Eq(A2) as the behavior oK(R,v) for R METRIC

—o0 we get thatA(R,v)=1— x(RY " ¥/RI3) + O(R2€~3)) from

the equations of motiofil5]. We start with a @+ 1)-dimensional metric of the form
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ds?= —fdt?+f ~Leddp?+ el (d-2u;2¢p2
Py °
';)d—z’

+e'p?sirfod0s_,, f=1- (B1)

with g=q(p) andu=u(p), i.e. without anyd dependence.
We see that EqB1) is in the form of the ansat@.6) with

A=e andK=e". We want to analyze the solutions of the

vacuum Einstein equations with the met(ig1)

FromR;3=0 we immediately get thay’ = (d—1)u’. We
can therefore writeq=s+(d—1)u wheres is a constant.
Write now  dQ3_,=d¢2+sirPg,dgs+ - - - +sirPe,- -

X SirPgy_sdd3_,, Where ¢, ...,pq_, are the angles of
S92, If we consider the Einstein equaticﬁﬁfz}lzo it is easy

to see that equation only can be satisfied provided.
Therefore, the metri€B1) reduces to

de?=—fdt?+f ~teld"Vudp2+ e'p2(dH?+ sirfadQ3_,),

pd—2
le_%.
P

(B2)

We now consider the solutions of the vacuum Einstein equ

tions for this metric, still withu:u(}i). The remaining non-
trivial Einstein equations gives the two equations

d-3 d-2
u//_ - u/_ (U,)ZZO,

(B3)
; 2

a

PHYSICAL REVIEW D69, 104015 (2004

d-2 d-2
d-1 1
(1—52_2 u'+ — u’—fg_zsu’
p p PP
2(d—-2
- (~—2)(e<d*2>“—1)=0. (B4)
p
Defining
~ d-2 .
G(p)=ex —-—Ey-u(p) , (B5)
we see that EqB3) becomes
d-3
G- —=—G'=0. (B6)
p
The most general solution to this equation is
G=cp? 40y, (B7)

with ¢; andc, being arbitrary constants. Settirig7) into
(B4) we get that Eq(B4) is fulfilled if and only if

pd %cic+ci=1. (B8)

Thus, we get that the most general vacuum solution with
metric (B2) is given by

d—2
exg — ——u

wherew is an arbitrary constant. This means that the most
general vacuum solution with metriB1) is given byq
=(d—1)u and(B9).

1_W2 ;;d72

- d-2
Po

+Ww, (B9)

w
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